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ABSTRACT
We contribute a scalable, open source implementation [1] of the
Pooled Time Series (PoT) algorithm fromCVPR 2015. �e algorithm
is evaluated on approximately 6800 human tra�cking (HT) videos
collected from the deep and dark web, and on an open dataset:
the Human Motion Database (HMDB). We describe PoT and our
motivation for using it on larger data and the issues we encountered.
Our new solution reimagines PoT as an Apache Hadoop-based
algorithm. We demonstrate that our new Hadoop-based algorithm
successfully identi�es similar videos in the HT and HMDB datasets
and we evaluate the algorithm qualitatively and quantitatively.

CCS CONCEPTS
•Information systems→ Information retrieval; Image search;
•Applied computing→ Computer forensics;

KEYWORDS
pooled time series, hadoop, darpa, memex, video.

1 INTRODUCTION
We have seen an increase in online video content used in “dark
markets” that deal with illegal trade and sale of goods. In particular,
working on the DARPA MEMEX [2] e�ort our team has worked in
conjunction with law enforcement to mine videos on the web to
help thwart human, weapons and arms tra�cking, and tra�cking
of other products, such as counterfeit electronics. Multimedia
content is a tool used by those selling their wares in these markets
to remain hidden from traditional web searches and from bulk
analysis - MEMEX is working to change this.

Our team collected a large video set from human-tra�cking
(HT) focused sites. �e dataset - dubbed HT video dataset - is
26Gb in size and 6805 in number (including duplicates); 14.3 Gb
and 3266 in number (without duplicates). All videos are in MP4
format with an average video size of 3.8MB, and at least 1Mb, and
at most ˜10Mb in the deduplicated set - in the set with duplicates
the average size is 4Mb, the minimum size 1Mb and the maximum
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size ˜10Mb. Total length of recording is ≈ 2250 hours with average
length of recording = 19.8 seconds.

Law enforcement and other stakeholders have challenged us to
reliably and at scale �nd similar videos in the HT video dataset.
We used the Apache Tika system [3] initially for this task. Tika is
an open source content detection and analysis system that automat-
ically identi�es a �le’s type; and automatically selects a relevant
parser to extract text, metadata and language information from
it. Tika supports multimedia metadata extraction such as EXIF
metadata that is present in images and videos and that tells us
scene, content editing, and authorship properties. Simply looking
at the metadata is fast, reliable, and e�ective[4].

While metadata forensics were initially useful, it became neces-
sary to perform actual video pixel (gradient) analysis in order to
�nd similar videos. We also found temporal relationships and mo-
tion present in the videos were e�ective at relating them. Members
of our team previously developed the Pooled Time Series (PoT)
approach [5] that combines both oriented gradient (image di�erenc-
ing) and optical �ow (image motion di�erencing) to realize such an
approach. With PoT we identi�ed relationships between victims;
common scenes and housing (gradient); common movements such
as dancing and/or derobing (�ow); common clothing (gradient) and
more.

PoT’s existing implementation worked on up to 500 videos from
the HT video dataset. We could analyze them in reasonable
amounts of time (maximum: 2 days). However, as soon as we
entered the realm of ˜7000 videos, we were never able to get the
PoT reference implementation in Java to complete. We discerned
several causes: (1)Out of Memory (OoM) – Since PoT computes time-
interval based descriptions and must pool and summarize those for
motion and gradient di�erence over many video frames over many
1000s of videos, we constantly ran out of memory; (2) Sequential
Code – PoT steps were sequentially implemented in Java. �at
is, �rst the histogram of oriented gradients (HoG) was computed;
then histogram of optical �ow (HoF) - each of these are very large
matrices with N dimensional vectors for each video. �en the
di�erences between HoG and HoF for each video and mean chi
square is computed; and (3) Instrumentation and Checkpointing –
PoT code lacked critical logging information.

While we added logging and checkpointing to PoT’s code, OoM
issues and sequential code prevented us from running PoT across
the entire HT video dataset. As our team includes a member of
the Apache Nutch commi�ee that helped to build Apache Hadoop
[6], we were inspired to develop a Hadoop-version of PoT that
was parallel, and memory e�cient. Hadoop is an open source
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implementation of Google’s Map Reduce [7] and Google File Sys-
tem (GFS) [8] for fast parallel data processing and highly reliable,
available and redundant data on commodity clusters.

A roadmap for the paper follows. Sec. 2 describes the general
steps of PoT motivating their conversion to Hadoop. Sec. 3 de-
scribes the steps of our Hadoop-POT algorithm and approach. We
evaluate our approach in Sec. 4. Sec. 5 rounds out the paper.

2 POOLED TIME SERIES VIDEO SIMILARITY
Pooled Time Series (PoT) [5] is an algorithm that takes as input
a set of N videos and generates as output an N × N matrix with
the pair-wise similarities between each video 1...N . �e diagonals
of the matrix are unused, as is half of the matrix since it contains
duplicative information. �e �rst step in computing PoT is generat-
ing two histograms: one histogram of oriented gradients (HoG) to
identify object movements and one histogram of optical �ow (HoF)
to model relative motion between actor and viewer in a video.

To calculate raw similarity scores we generate all possible video
pairs. If the initial video dataset size is N we end up with N (N−1)
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pairs and an N × N sized matrix V where Vi j is the pair of videos
vi and vj and i, j ∈ [1,N ]. For each Vi j we assign a similarity
score. �e chi squared distance (CSD) between all the features of
all the possible Vi j in V is calculated next. For each video 1...N
we have two series histograms (HoF and HoG) and three pooling
operators so for each video we have total of six features where
feature f is denoted f (s,p). A�er computing CSD, PoT computes
the mean CSD (mCSD) for the whole video dataset. A�er mCSD
is computed, PoT computes kernel distances (KD) for the dataset
by calculating CSD for a given feature f (s,p) between two videos.
We then divide the CSD by its corresponding mCSD. Adding all
the kernel distances for one video pair gives us the total distance
between the pair.

�e overall time complexity of the PoT algorithm is roughly
O (N 2). �emain factor that in�uences complexity is the number of
videos, all other factors like number of series and pooling operators
are constant and chosen manually. In the HT video dataset there
are nearly 24.5 million pairs. If both pairs have 800 frames with a
200 pixel representation in HoF and HoGwe are processing 640, 000
raw values for each pair. �is restricts PoT to a few hundred videos
to complete in any meaningful amount of time - we ran it for nearly
a week without completion on a 20 node Amazon cloud cluster,
where each node was M3.xlarge, with 32Gb of RAM.

3 HADOOP POOLED TIME SERIES
Re-envisioning PoT as a Hadoop Map Reduce [6] job was an iter-
ative process. We began by using a list of video �les as the core
data structure to be split and partitioned using Hadoop. Hadoop
requires us to de�ne the following constructs: (1) a Split/Partition
function that will partition the video datasets into equally sized, in-
dependent jobs that can proceed in parallel; (2) a Mapper function,
that, given a set of equally sized independent data from the split,
will process that data, and produce some intermediate results; (3) a
Reducer function, that takes the intermediate output from theMap-
per jobs, and that combines them into �nal output results. Hadoop
handlesMapper and Reducer job execution; re-execution in the case
of failure; data input/output storage in a highly redundant and

available �lesystem, HDFS. Hadoop provides native capabilities to
split datasets e.g., via hashing.

Since PoT is data-�ow dependent e.g., HoF and HoG must be
calculated before raw similarity score generation, then the raw
similarity scores need to be computed before mean chi squared
computation, and that mean chi square values must be present
before the �nal kernel distance can be computed, we were unable
to de�ne a single Mapper and Reducer job to represent each of
these steps. Instead, the best way to proceed was to de�ne several
sets of Map/Reduce tasks, representing each of the stages of the
algorithm.

3.1 Implementation Considerations
We considered using the Hadoop Image Processing Interface (HIPI)
[9], but instead chose to use core OpenCV since the early imple-
mentation of the sequential PoT algorithm was done using direct
calls to OpenCV and we wanted to remain backwards compatible
with the prior code as much as possible. We also looked at Xuggle
[10] but its main focus was streaming video.

We realized early on thatwe could have separateMapper/Reducer
tasks for HoG and HoF, and that those largely could be done once,
o�ine, and then kept in HDFS for future use in the other Map-
per/Reducer task combinations. For example, once the HoF and
HoG were generated for all videos, we could create a Reducer that
could be used to compute similarities (initially raw), and also mean
chi squared distance and kernel distance. We wanted to keep the
output format for the matrix simple, so we chose a simple ASCII-
text �le to represent it, and also to take advantage of Hadoop HDFS
and its native support for text �les. HoF and HoG outputs were
similarly stored as matrices in ASCII oriented text �le formats (such
as CSV), as were the output raw similarity scores and distances.
�e initial Hadoop-PoT design includes two jobs for HoF and HoG,
one job for calculating mean distance (using the raw distances and
mean chi squared) and another job for calculating similarity (using
kernel distance).

3.2 Hadoop-POT v1
We have one job each for calculating HoF and HoG from videos.
Each of these jobs takes a �le path as parameter and uses OpenCV
to calculate features. �ese features are saved as text �les, *.of.txt
and *.hog.txt.To compute similarity we generate a cartesian product
of video set with itself. Consider that we are processing a video set
of three videos. For this, we will generate pair likev1v2,v1v3,v2v3.
�ese pair of video names are stored in a CSV �le which is provided
as input to both similarity calculating jobs. �e �rst job calculates
mean chi square distance for whole data set. It reads *.of.txt and
*.hog.txt for each respective video pair and generates one output
�le having mean chi squared distance (mCSD). We calculate mCSD
for each series and for each pooling operator which gives us 2 ×
3 = 6 mean distances. Our Mapper jobs in this step calculate chi
squared distances (CSD) for one pair and the associated Reducer
job calculates the mean of all the distances. We create a second
Mapper job that takes a pair of �lenames as input and that then
calculates similarity score using the kernel distance. �e output of
this job is a CSV �le with a similarity score per video.

2



�eoriginal Hadoop-POT v1 design involved dumping the output
results (CSVs, text �les) of individual steps from HDFS to the local
�le system and then by copying those local �le system results from
the local �le system to HDFS for the next stage. �is was performed
for the following reason - we initially had great di�culty ge�ing
the Java OpenCV APIs to read data from HDFS. Errors ranged
from intermi�ent exceptions to I/O errors with Java itself. We later
traced these to the implementation bindings in the Java OpenCV
library and its API. Another �aw with our v1 implementation was
that while dumping video name.of.txt and video name.hog.txt we
saved double values in a text �le. �is caused both of our similarity
jobs to read these �les repeatedly O (N 2) times and to, during the
process, convert them from string values to double values for
each value in the matrices. Considering previous example Mapper
jobs had to convert 640, 000 values to double at a cost of about 1.5
seconds per �le, scaling this up to 24 million jobs as required by HT
video datasetwould require more than a year of processing time
which we did not have. We also realized that we were calculating
features repeatedly for each pair instead of caching them.

Instead of text �les, we decided that the next Hadoop-POT iter-
ation should use be�er representations for matrices and vectors
and that it should store all of the values for our video data set in
a single �le. Our initial approach of using a CSV with �le paths
pointing to the computed text �les for HoF and HoG for each video
masked the real input and its size was thus determined via a single
�le, rather than the actual total N video �les present in the dataset.
�is led to a smaller input splits as Hadoop had no idea about the
size of the real input. Input splits should contain values of features
rather than path to features for fair input splits. Using less input
splits underutilized the cluster and as a result, our Hadoop-POT v1
was quite slow.

Apart from input splits with this input structure we could not
use Hadoop’s distributed �le processing e�ectively. Hadoop HDFS
is made to deal with large �les wherein which a �le is broken into
small splits and each split can be on a di�erent machine. When
a job is assigned to a container it is assigned to container that is
running on same machine where the split is stored to reduce IO
and contention. With input �les being paths to features we were
unable to use Hadoop’s I/O data locality, and instead Mapper jobs
read data from di�erent nodes instead of those that contained the
actual data from the split.

3.3 Redis and Hadoop-POT v2
Our Hadoop-POT v2 architecture converted text to double format
for the values in our matrices by using a Redis cache server. Redis is
an e�cient, scalable key value based caching utility that operates
in a client server fashion with automatic data typing. A client
connects to a Redis server and then PUTS a key, value pair, where
the key and value can be any typed data. Redis e�ciently stores
that key, value pair, providing a GET based interface to retrieve it
later rapidly and e�ciently. We built our v2 system using a Redis
cache with the key being a single video �le name and the value
being computed feature vector. �is reduced job execution time to
milliseconds instead of 1.5 seconds per job as in the v1 architecture.
However, in doing so, we introduced yet another component into

Figure 1: Our �nal Hadoop-PoT v3 architecture.

our architecture besides Hadoop and went around Hadoop’s native
support for similar data structures.

We also tried resource localization by archiving all the video name.of.txt
and video name.hog.txt into one big zip �le and passing that �le as a
cached archive in our Hadoop similarity jobs. �is reduced time in
reading the �le for the very �rst time. We also experimented with
di�erent split sizes to increase resource utilization. Redis brought
down computation time, but increased our system complexity.

3.4 Hadoop-POT-v3
Realizing that Hadoop provided native data structures for fast stor-
age and retrieval of multiple objects, and structures that themselves
were easily spli�able and usable as input to Mapper jobs, and Re-
ducer jobs, we eliminated the Redis component introduced in v2
of our architecture and replaced it with Hadoop SequenceFiles.
SequenceFiles are a native Hadoop construct that allow easy com-
bination and summarization of many small input �les. Sequence
�les can be thought of as a zipped version of multiple �les. As
shown in Fig. 1 we take both features of one video and compute
its PoT representation as a java object and serialize that object to
bytes in v3 of our architecture. �is serialized vector is stored as
the value in sequence �le, wherein which the key is the name of
video �le. We use this key later while outpu�ing the overall PoT
similarity CSV as output of the algorithm. �is sequence �le is also
generated natively by our Mapper jobs and read natively by our
Reducer jobs, removing any specialized code that we had present
in v2 of our architecture.

�e �nal step in our v3 architecture was computation of the
Cartesian product on sequence �les. We did this by overriding
Hadoop’s RecordReader and FileInputFormat classes. Our sim-
ilarity jobs take generated SequenceFiles as input and use our
own CartesianInputFormat which �rst permutes through splits
and then permutes within a split to generate a pair of video features
for our Mapper jobs.

4 EVALUATION
�antitatively our Hadoop-POT v3 algorithm reduced the time nec-
essary for each of ourMapper jobs to complete to ≈ 42 milliseconds
evaluated on HT video dataset allowing the needed 24 million+
computations to be executable in a reasonable amount of time. �is
entire HT video dataset was processed using Hadoop-POT v3 on
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a 10 node cluster in Amazon using M3.xlarge instances with 32Gb
memory each, and with EBS storage with 8 containers on each
node in ≈ 26 hours. We used cached vector �les for this run which
takes ≈6.5 hours to generate from input videos in the HT video
dataset. Complete quantitative evaluation for Hadoop-POT jobs
is provided at [11].

�alitatively evaluating our results involves multiple areas. Sim-
ply being able to compute PoT on the HT video datasetwhich we
were unable to do using the previous PoT algorithm and implemen-
tation is a core contribution of our work. Without our Hadoop-POT
v3 algorithm and its implementation, large video datasets cannot
be run through the PoT algorithm and its previous sequential im-
plementation. One of the satisfying results was identifying almost
identical video pairs. Some videos had same content but they dif-
fered in their hash codes due to subtle di�erences. For example,
Hadoop-POT was able to identify the same video clips of di�erent
length. In addition, the same videos with di�erent resolutions (e.g.,
800 × 600 versus 1024 × 768) were also easily identi�able using our
method.

We also evaluated our algorithm by comparing how well it
grouped videos that were identi�ed as similar by automated tag-
ging. We used the Inception-V3 model packaged with Google’s
Tensor�ow [12] to label each video using video frame extraction
and image tagging. We then leveraged the labels from Tensor�ow
to compare Hadoop-POT recall rates. We extracted the �ve most
similar videos for all videos in the HT video dataset and grouped
results by Tensor�ow label. We observed that for the top k = 20
categories (e.g., beer, toilet, bikini, brassiere) that our algorithm
could �nd related videos accurately and e�ciently. Experimenta-
tions performed with another labeling toolkit, sklearn[13] and its
DBSCAN [14] algorithm, produced similar observations.

To demonstrate that Hadoop-POT results were not speci�c to our
own dataset, we evaluated it on the pre-annotated openly available
HMDB - Human Motion Database [15]. HMDB is a large data set
having 6.8 thousand annotated videos of 51 human motions. �e
dataset is 1.9Gb with the shortest video being 37KB and largest
being 1.3 MB. �e total duration of recording is ≈ 350 hours with
mean length of a video equals 3.1 seconds. Actions include facial
actions like laughing and talking and body movement like walking,
climbing etc. HMDB includes object interaction e.g., smoking,
kicking a ball, etc.

We ran Hadoop-POT on HMDB dataset and it took 26.85 hours
to complete. �e �nal size of the similarity matrix is ≈ 6800 × 6800
which is ≈23 million unique pairs of videos. We observed that
for each video category in HMDB that the most similar category
returned by Hadoop-POT is also the same. For example videos
under category ”golf” are most similar to videos under category
”golf”. We also see ”walk” category to be most similar with other
categories due to its uneven distribution. Nearly 10% of data set
is ”walk” videos as compared to 2% under equal division. �e
complete set of 49 labels we extracted/evaluated is at [11].

5 CONCLUSIONS AND FUTUREWORK
Several opportunities to improve Hadoop-POT exist. Videos exist in
both datasets in which a person performed similar hand and head
movements but that were not identi�ed as similar. Intuition tells

us in these examples that HoF and HoG were unable to e�ectively
capture certain movements, e.g., pa�erns or shapes,and as such
adding more descriptors would likely aid these situations. We will
support more video features based on convoluted neural networks
(CNN) as they have shown promise in detecting such motions.

We will also investigate: (1) removing banners at starting of a
video; (2) dividing a video into a set of scenes as done in [16]; and
(3) �nding and extracting important parts of a video e.g., as in [17].
�ese steps will help in comparing videos of dissimilar length and
removing unwanted parts from the video.
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